Linear discriminant analysis using rotational invariant L1 norm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear discriminant analysis using rotational invariant L1 norm

Linear discriminant analysis (LDA) is a well-known scheme for supervised subspace learning. It has been widely used in the applications of computer vision and pattern recognition. However, an intrinsic limitation of LDA is the sensitivity to the presence of outliers, due to using the Frobenius norm to measure the inter-class and intra-class distances. In this paper, we propose a novel rotationa...

متن کامل

Rotational Linear Discriminant Analysis Using Bayes Rule for Dimensionality Reduction

Linear discriminant analysis (LDA) finds an orientation that projects high dimensional feature vectors to reduced dimensional feature space in such a way that the overlapping between the classes in this feature space is minimum. This overlapping is usually finite and produces finite classification error which is further minimized by rotational LDA technique. This rotational LDA technique rotate...

متن کامل

Generalization of linear discriminant analysis using Lp-norm

0167-8655/$ see front matter 2013 Elsevier B.V. A http://dx.doi.org/10.1016/j.patrec.2013.01.016 ⇑ Corresponding author. Tel.: +82 (0) 31 219 2480; E-mail addresses: [email protected] (J.H. Oh) @ieee.org (N. Kwak). 1 Jae Hyun Oh is pursuing a Ph.D. degree at the Computer Engineering, Ajou University, Republic of Ko 2 Nojun Kwak is an associate professor at the Depart Engineering, Ajou Universi...

متن کامل

Optimal Conjugate Gradient Algorithm for Generalization of Linear Discriminant Analysis Based on L1 Norm

This paper analyzes a linear discriminant subspace technique from an L1 point of view. We propose an efficient and optimal algorithm that addresses several major issues with prior work based on, not only the L1 based LDA algorithm but also its L2 counterpart. This includes algorithm implementation, effect of outliers and optimality of parameters used. The key idea is to use conjugate gradient t...

متن کامل

A Multi Linear Discriminant Analysis Method Using a Subtraction Criteria

Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2010

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2010.05.016